EBM - Biostatistics Review Pitfalls on Board Exams

Anthony J. Busti, MD, PharmD, MSc, FNLA, FAHA

Introduction

Pitfalls on Board Exams

- Picking the Wrong Statistical Test -

Pitfalls on Board Exams

- Picking the Wrong Statistical Test Identify the Types of Groups Studied

Type of Groups

Related Groups	Independent Groups
SAME patient in ALL arms	DIFFERENT patients in each arm
- Cross-Over Studies	- RCT
- Retrospective Study of All	- Cohort Study
Patients Start \& End of Study	- Case-Controlled Study
- Left eye vs right eye on the	
same patient	
- Warning:	
- Patients Randomized to	
- look almost the same	
- Identical Twins	

HICH-YIELD
HIGH-YIELD
MED REVIEWS

Pitfalls on Board Exams

- Correctly identify the endpoint being studied in the study's objective or study question being asked.
- You must get oriented!
- This is the killer foil step for most people.
- How is the endpoint being treated (i.e., type of data)?
- Nominal
- Ordinal
- Continuous

> f MEH-YIELD REVIEWS

Ordinal Data

- Key descriptors:
- Data endpoints have a sense of "order" that also has a sense of "ranking" or "scale"
- Nonparametric (not normally distributed data)
- Could by continuous data with outliers
- Assessment of data:
- The "magnitude of difference" between endpoints is \qquad the same

Pitfalls on Board Exams

- Picking the Wrong Statistical Test Identify the Endpoint in the Study Question

ξ
HIGH-YIELD
MED REVIEWS

Nominal Data

- Key descriptors:

- Categorical
- Dichotomous
- Binomial distribution
- No sense of " \qquad " or " \qquad $"$
- Thus the magnitude of difference between the two does not apply
- Assessment of data:
- The endpoint is treated at the end as:
- "yes or no"
- "either did or didn't"
- There CANNOT be an average or a mean value
\& MED REVIEWs

Ordinal Data

- Examples of Ordinal Data:
- Classification of HF (class I - IV)
- Severity of pain:
- Mild, Moderate, or Severe
- Well's Score for PE (0-12.5)
- Low or PE unlikely (< 4 points)
- Moderate (4-6 points)
- High probability (> 6 points)
- What about:
- NIH Stroke "Scale"
- Pain Scale: 0-10

Type of Data

F MED REMIELD

Type of Data	Two Independent Samples	Related or Paired Samples	3 or more Independent Samples	3 or more Related Samples	Measures of Correlation
Nominal	1.Chi-square 2.Fisher's Exact	McNemar Test	Chi-square for k independe nt samples	Cochran Q	Contingency coefficient
Ordinal	1.Mann- Whitney U 2.Wilcoxon Rank Sum	1.Sign test 2.Wilcoxon Signed Rank	Kruskal- Wallis one way ANOVA	Freidman 2 way ANOVA	2.Kendal rank
Continuous	1.Student's t-test	2.Mann- Whitney U	Paired t-test	1-way ANOVA	2-way ANOVA

Continuous Data

- Key descriptors:
- Data endpoints have a sense of "order" that also has a sense of "ranking"
- Parametrically distributed
- Assumes no " \qquad "
- Assessment of data:
- The "magnitude of difference" between endpoints is \qquad the same

HIGH-YIELD
${ }^{\text {HICH-YELED }}$

Continuous Data

- Examples of Continuous Data:

- Temperature
- Pulse (heart rate)
- Blood pressure (without a cutoff or designated goal)
- Labs (Sodium level)
(1) HIGH-YIELD

MED REVIEWS

Pitfalls on Board Exams

- Picking the Wrong Statistical Test Identify the Best Test for Data Obtained

Type of Data	Two Independent Samples	Related or Paired Samples	3 or more Independent Samples	3 or more Related Samples	Measures of Correlation
Nominal	1.Chi-square 2.Fisher's Exact	McNemar Test	Chi-square for k independe nt samples	Cochran Q	Contingency coefficient
Ordinal	1.MannWhitney U 2.Wilcoxon Rank Sum	1.Sign test 2.Wilcoxon Signed Rank	KruskalWallis one way ANOVA	Freidman 2 way ANOVA	1.Spearman 2.Kendal rank 3.Kendal Coe
Continuous	$\begin{aligned} & \text { 1.Student's } \\ & \text { t-test } \\ & \text { 2.Mann- } \\ & \text { Whitney U } \end{aligned}$	Paired t-test	1-way ANOVA	2-way ANOVA	Pearson's Correlation

Measures of Variability or Data Dispersion

 f MIGH-YieLd

Measures of Variability or Data Dispersion

Type of Data	Two Independent Samples	Related or Paired Samples	3 or more Independent Samples	3 or more Related Samples	Measures of Correlation
Nominal	1.Chi-square 2.Fisher's Exact	McNemar Test	Chi-square for k independe nt samples	Cochran Q	Contingency coefficient
		Nonparametric			
Ordinal	1.MannWhitney U 2.Wilcoxon Rank Sum	2.Wilcoxon Signed Rank	KruskalWallis one way ANOVA	Freidman 2 way ANOVA	1.Spearman 2.Kendal rank 3.Kendal Coe
Continuous	1.Student's t-test 2.MannWhitney U	Pai Parametric		2-way ANOVA	Pearson's Correlation

Measures of Variability or Data Dispersion

hich-yieLD
MED REVIEWs

Measure of Variability

Study Sample 1 \quad Study Sample 2

Measure of Variability
Standard Deviation

Chi-squared vs. Fisher's exact

Variable	Chi-square test	Fisher's exact test
Sample Size	Large	Small
Desired Accuracy	Approximate	"Exact"
Considerations	- Becomes more accurate with larger sample sizes	- More exact regardless of number but harder to calculate by hand using computer. - Note: is it really "exact"? - Typically used when > 20% of the cells have a frequency of < 5 because an approximation at this level is inadequate.

Type of Data	Two Independent Samples	Related or Paired Samples	3 or more Independent Samples	3 or more Related Samples	Measures of Correlation
Nominal	1.Chi-square 2.Fisher's Exact	McNemar Test	Chi-square for k independe nt samples	Cochran Q	Contingency coefficient
Ordinal	1.MannWhitney U 2.Wilcoxon Rank Sum	1.Sign test 2.Wilcoxon Signed Rank	KruskalWallis one way ANOVA	Freidman 2 way ANOVA	1.Spearman 2.Kendal rank 3.Kendal Coe
Continuous	1.Student's t-test 2.Mann- Whitney U	Paired t-test	1-way ANOVA	2-way ANOVA	Pearson's Correlation

Type of Data	Two Independent Samples	Related or Paired Samples	3 or more Independent Samples	3 or more Related Samples	Measures of Correlation
Nominal	1.Chi-square 2.Fisher's Exact	McNemar Test	Chi-square for k independe nt samples	Cochran Q	Contingency coefficient
Ordinal	1.MannWhitney U 2.Wilcoxon Rank Sum	1.Sign test 2.Wilcoxon Signed Rank	KruskalWallis one way ANOVA	Freidman 2 way ANOVA	1.Spearman 2.Kendal rank 3.Kendal Coe
Continuous	1.Student's t-test 2.MannWhitney U	Paired t-test	1-way ANOVA	2-way ANOVA	Pearson's Correlation

Pitfalls on Board Exams
- Incorrect Interpretation of Power -

Hypothesis Testing - Power Analysis

- Power = 1 - β
- Indicates the probability that a statistical test can detect a significant difference when in fact, it truly exists.
- Since Beta (β) indicates the probability of making a type
\qquad , the power calculation tells you the
probability that you will NOT make a \qquad _.

Beta $\mathbf{(} \boldsymbol{\beta} \mathbf{)}$	$\mathbf{Z} \boldsymbol{\beta}$	Sample Size (n)
0.01 or 1%	2.32	36
0.05 or 5%	1.64	26
0.1 or 10%	1.28	21
0.2 or 20%	0.85	16

fi HICH-YIELD
V MED REVIEWS

P-Values

- Example Scenario:

- Which of the following results has the greater clinical significance?
- Study Endpoint $1 \rightarrow p=0.0003$
- Study Endpoint $2 \rightarrow p=0.001$

Pitfalls on Board Exams

\author{

- Incorrect Interpretation of P-values -
}

P-Values

- Interpretation:
- Helps assess if the results are from chance or random error
- HAS NOTHING TO DO WITH CLINICAL SIGNIFICANCE
- Interpret the p-value:
- $P=0.003$
- \quad chance alone che the results are due to tor are by
- $\mathrm{P}=0.01$
- \quad chance alone
- A p-value < 0.05 suggests the null hypothesis should be rejected or is "less true"
B' MICH-YELD REVIEWS

95\% Confidence Intervals

- Example Scenario:

- Which of the following results reflects the true population result?
- Study Endpoint $1 \rightarrow$ RR 0.65 (0.45-0.76)
- Study Endpoint $2 \rightarrow$ RR 0.78 ($0.71-0.82$)
- Which one is statistically significant
- BOTH
- Interpret endpoint 1
-
- ___ of the risk of the outcome was removed by being exposed to the intervention

95\% Confidence Intervals

- Basics:

- Get oriented!
- If $95 \% \mathrm{Cl}$ is for $\mathrm{HR}, \mathrm{OR}, \mathrm{RR}$, or Risk Ratio then:
- If the $95 \% \mathrm{Cl}$ crosses through and includes \qquad it CANNOT be statistically significant
- If the $95 \% \mathrm{Cl}$ for a "mean or average" then:
- If the $95 \% \mathrm{Cl}$ crosses through and includes \qquad it CANNOT be statistically significant
hich-YieLd
MED REVIEWS

Relative Risk

- $R R=$ incidence rate in exposed patients incidence rate in non-exposed patients
- $R R=1$ (incidence is the same for both groups)
- $R R=>1$ (incidence in exposed group is higher)
- $R R=<1$ (incidence in exposed group is less)

Main Results

Outcome	Dexamethasone	Placebo	RR (95\% CI)	P-value
Unfavorable Outcome				
All patients	$23 / 157$	$36 / 144$	<1	
S. pneumoniae	$15 / 58$	$26 / 50$	<1	
N. meningitidis	$4 / 5$	$5 / 47$	>1	
Other bacteria	$2 / 12$	$1 / 17$	>1	
Death				
All patients	$11 / 157$	$21 / 144$	>1	
S. pneumoniae	$8 / 58$	$11 / 50$	>1	
N. meningitidis	$2 / 50$	$1 / 47$	$1 / 17$	
Other bacteria	$1 / 12$			

Pitfalls on Board Exams

\author{

- Incorrect Interpretation of Relative Risk -
}

Relative Risk

- Relative Risk Reduction (RRR)
- Remember it is $=1-R R$

- Absolute Risk Reduction (ARR)

- It is the difference between the incidence of the exposed group and the unexposed group
- Used to calculate NNT or NNH
- NNT = \qquad
- It must then be put into the context of the clinical trial duration/method of treatment

HIGH-YіELD
med reviews

Main Results

$$
R R=\frac{\text { incidence rate in exposed patients }}{\text { incidence rate in non-exposed patients }}
$$

1. Calculate the incidence in each group

Main Results

Outcome	Dexamethasone	Placebo	RR (95\% CI)	P-value	
Unfavorable Outcome					
All patients	$23 / 157$	$36 / 144$			
S. pneumoniae	$15 / 58(0.26)$	$26 / 50(0.52)$			
N. meningitidis	$4 / 5$	$5 / 47$			
Other bacteria	$2 / 12$	$1 / 17$			
Death					
All patients	$11 / 157$	$21 / 144$			
S. pneumoniae	$8 / 58$	$11 / 50$			
N. meningitidis	$2 / 50$	$1 / 47$			
Other bacteria	$1 / 12$	$1 / 17$			

NEJM 2002;347(20):1549-56.

Main Results

Outcome	Dexamethasone	Placebo	RR (95\% CI)	P-value	
Unfavorable Outcome					
All patients	$23 / 157$	$36 / 144$			
S. pneumoniae	$15 / 58(0.26)$	$26 / 50(0.52)$	$0.50(0.30-0.83)$		
N. meningitidis	$4 / 5$	$5 / 47$			
Other bacteria	$2 / 12$	$1 / 17$			
Death					
All patients	$11 / 157$	$21 / 144$			
S. pneumoniae	$8 / 58$	$11 / 50$			
N. meningitidis	$2 / 50$	$1 / 47$			
Other bacteria	$1 / 12$	$1 / 17$			

Main Results

$$
R R=\frac{\text { incidence rate in exposed patients }}{\text { incidence rate in non-exposed patients }}
$$

1. Calculate the incidence in each group
2. $R R=0.26 / 0.52=0.5$

Main Results

Outcome	Dexamethasone	Placebo	RR (95\% CI)	P-value	
Unfavorable Outcome					
All patients	$23 / 157$	$36 / 144$	$0.59(0.37-0.94)$		
S. pneumoniae	$15 / 58(0.26)$	$26 / 50(0.52)$	$0.50(0.30-0.83)$		
N. meningitidis	$4 / 5$	$5 / 47$	$0.75(0.21-2.63)$		
Other bacteria	$2 / 12$	$1 / 17$	$2.83(0.29-27.8)$		
Death					
All patients	$11 / 157$	$21 / 144$	$0.48(0.24-0.96)$		
S. pneumoniae	$8 / 58$	$11 / 50$	$0.41(0.19-0.86)$		
N. meningitidis	$2 / 50$	$1 / 47$	$1.88(0.76-20.1)$		
Other bacteria	$1 / 12$	$1 / 17$	$1.42(0.10-20.5)$		

Which results are significant?

NNT

$$
\text { RR }=\frac{\text { incidence rate in exposed patients }}{\text { incidence rate in non-exposed patients }}
$$

1. Calculate the incidence in each group
2. $R R=0.26 / 0.52=0.5$
3. $A R R=0.26-0.52=0.26$
4. $\mathrm{NNT}=1 / 0.26$

$$
=3.8 \text { or } \sim 4
$$

- You would have to treat about 4 patients with dexamethasone 10 mg IV $\times 6$ hrs $\times 4$ days with S. pneumonia meningitis for 1 patient to have a favorable outcome.
- Versus 10 patients if considering "all patients"

$$
\$^{\text {§ }} \text { MICH-YELED REVIEWs }
$$

NNH Calculation

- Example:

- The CURE Study showed the following for risk of major bleeding:
- Group A (Treated with Aspirin) $=2.7 \%$
- Group B (Aspirin + clopidogrel) $=3.7 \%$
- NNH -1/Attributable Risk (or Absolute Increase in Risk)
- Attributable Risk $=0.037-0.027=0.01$
- $\mathrm{NNH}=1 / 0.01=100$
- For every 100 patients treated with aspirin + clopidogrel, 1 patient would develop a major bleed

Closing

- Avoiding common pitfalls on board exams:
- Getting oriented on study design and question being asked/studied to pick the right statistical test
- Using P-values in their proper context
- Understanding what the Power of a study means
- Getting oriented to data variable for the $95 \% \mathrm{Cl}$
- Keeping the relative risk numbers right
§" HIGH-YוELD MED MEHELELD REVIEWs

Coupon

- Limited time coupon

- Coupon = \qquad
- 10\% OFF ENTIRE ORDER
- Expires = February 28, 2023
- We value your feedback.
- Only 2 minutes of your time on this free webinar event and enter a chance to win $\$ 100$ gift card.
- https://high-yield-webinar-survey.paperform.co/

Live Q\&̊A

HIGH-YIELD MED REVIEWS

